Nonlinear quadratic Volterra-Urysohn functional-integral equations in Orlicz spaces

نویسندگان

چکیده

The current article discusses the existence of monotonic discontinuous solutions for general nonlinear quadratic Volterra-Urysohn functional-integral equations in Orlicz spaces E? when function ? satisfies ?2-condition. case Lebesgue Lp (p > 1) are also examined. We use arguments measure noncompactness with Darbo fixed point theorem to prove our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quadratic Integral Equations of Urysohn Type in Fréchet Spaces

0 u(t, s, x(s)) ds, t ∈ J := [0,+∞), where f : J → R, u : J × [0, T ] × R → R are given functions and A : C(J,R) → C(J,R) is an appropriate operator. Here C(J,R) denotes the space of continuous functions x : J → R. Integral equations arise naturally from many applications in describing numerous real world problems, see, for instance, books by Agarwal et al. [1], Agarwal and O’Regan [2], Cordune...

متن کامل

Some Problems in Nonlinear Volterra Integral Equations

Upper and lower bounds for the norm of solutions of systems of first order differential equations as well as theorems on global existence and boundedness and other useful results have recently been obtained by comparing solutions of the given system with those of a related (single) first order differential equation. This technique, which is essentially due to Conti [5] and Wintner [9], has been...

متن کامل

Qualitative Properties of Nonlinear Volterra Integral Equations

In this article, the contraction mapping principle and Liapunov’s method are used to study qualitative properties of nonlinear Volterra equations of the form x(t) = a(t)− ∫ t 0 C(t, s)g(s, x(s)) ds, t ≥ 0. In particular, the existence of bounded solutions and solutions with various L properties are studied under suitable conditions on the functions involved with this equation.

متن کامل

A computational method for nonlinear mixed Volterra-Fredholm integral equations

In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative   examples are provided to demonstrate the applicability and simplicity of our   scheme.    

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2021

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2109963m